SOLAR STEAM GENERATION WITH LINEAR FRESNEL CONCENTRATED SOLAR POWER TECHNOLOGY

1st Concentrating Solar Heat (CSH) Workshop
Amman Crowne Plaza, September 18-19
MAIN APPLICATIONS

- **Thermal Enhanced Oil Recovery**
 - Steam injection to increase amount of oil extracted from an oil field

- **Industrial steam or hot water**
 - Process steam for industrial consumers: food, mine, textile, chemical

- **Desalination**
 - Steam to produce soft water through multiple effect distillation (MED)
TECHNOLOGY CHOICE

INDUSTRY
LOW
Below 150 °C
150 °C
100 °C
Flat plate
Vacuum tube
Vacuum tube CPC
MEDIUM
150 to 400 °C
150 °C
Small parabolic trough / linear Fresnel without evacuated receiver
Concentrating dish
HIGH
> 400 °C
350 °C
Large parabolic trough / linear Fresnel with evacuated receiver
GENERAL PRINCIPLES
OPERATING PRINCIPLE

The mirrors follow the sun’s path throughout the day, concentrating the sunrays onto a receiver. Water circulating in the receiver is then heated to generate steam.
MODULAR CONCEPT

DIMENSIONS

- Length 67m
- Width 18m
- Height 10m
- Mirrors area 900m² (560 units)

OPERATING PARAMETERS

- Peak power 500kWth
- Saturated steam up to 100 bars or superheated water up to 300°C
DEMO PLANT LA SEYNE SUR MER, FRANCE
BENEFITS OF THE TECHNOLOGY

SIMPLE, ROBUST & MODULAR
- Direct steam generation
- Fix receiver, flat glass mirrors
- Modular & scalable
- Automatic cleaning system
- Designed for harsh environment

COST EFFECTIVE
- Standard materials
- Optimized design
- Low-cost components
- Light foundations
- Low OPEX with automatic cleaning
- Low land usage

STRONG LOCAL CONTENT
- Mobile workshop with local manpower
- Standard equipment purchased locally
- Local manpower for erection & operation

SIMPLE & RAPID INSTALLATION
- Simple design for simple erection
- Workshops on site
- Lightweight components for the solar field
- On-site installation from 3 to 16 months depending on size
FOUNDATIONS / PILING

REVERSIBLE FOUNDATIONS
- Pile can be removed
- No heavy concrete foundation on solar field
- Site can be returned to its initial state

RAPID INSTALLATION
- High precision installation
- High installation rate
- In parallel with solar field erection

IMMEDIATE LOADING
- No concrete drying time needed
- Metallic structure directly installed for optimized time schedule

ADAPTABILITY
- Different type of piles available (rammed, screw)
- Design optimized according to soil characteristics
- Adapted to non flat sites
METALLIC STRUCTURE

1/ Standard galvanized steel profiles
2/ Easy & fast erection
3/ Light erection means
4/ Design adapted to any kind of non flat site
REFLECTORS

1/ Profiled coated steel sheets with proprietary tools

2/ Stamped coated steel sheets with proprietary tools, assembly by clinching tools

3/ Patented design with low weight/high wind resistance/corrosion resistance

4/ Low iron solar glass mirrors with high reflectivity, each row bended at optimal curvature
Reflectors are produced on-site in dedicated workshops

- Easier & faster shipping, only flat glass and thin metal sheets shipped on-site
- Safer method
- Automated tools for optimized quality
- Quality control of produced reflectors
- Use of local manpower
- One workshop produces one module quantity in 3 shifts
TRACKING SYSTEM

1/ System ensures automatic focusing of mirrors rows onto the receiver

2/ Electric actuator, one per module, low electric consumption

3/ High precision inclination control for optimized focusing
- Non-evacuated tube with selective coating
- 3" (88.9mm) diameter tube, thickness & material according to specific design (stainless or carbon steel)
- Secondary reflector to enhance efficiency
- Protective glass panes made of heat and thermal stress resisting glass
MIRRORS CLEANING SYSTEM

UNIQUE PATENTED SYSTEM
- Patent on cleaning robot
- Patent on complete system with automated support
- Patent on optimized cleaning methods adapted to the environment

FULLY AUTOMATIC SYSTEM
- Cleaning sequence performed off-line before sunrise
- Automated water filling
- Automatic battery charging
- No operation team needed

LOWEST WATER CONSUMPTION
- Very efficient washing method with extremely low water spray
- Typically 1 cleaning every 2/3 days
- Can run on morning dew deposit w/o additional water spray

ADAPTIVE SYSTEM
- Operator can select the cleaning frequency & adapt according to the season
- Several cleaning methods adapted to different environmental conditions (i.e. desert)
MIRRORS CLEANING SYSTEM
PROJECT

1st commercial Fresnel to produce 20 GWh of electricity per year

85MWt CSP plant with 4 hours storage, Llo, France, under construction
Concentrated Solar Power thermal energy plants competitiveness are mainly influenced by Location (DNI) + Plant size + Financing cost

LCoS below 20€/MWh is achievable but still over marginal natural gas costs in many countries, hence the need for other drivers to trigger an investment decision (subsidies, carbon tax, Co2 certificates...)

BUSINESS CASES

Solar Steam Generator for a mine

<table>
<thead>
<tr>
<th>Site conditions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual DNI</td>
<td>3,186 KWh/m²</td>
</tr>
<tr>
<td>Location</td>
<td>Chile</td>
</tr>
<tr>
<td>Solar field design data</td>
<td></td>
</tr>
<tr>
<td>Total number of modules</td>
<td>45</td>
</tr>
<tr>
<td>Mirrors area</td>
<td>40,446 m²</td>
</tr>
<tr>
<td>Land area</td>
<td>7 Ha</td>
</tr>
<tr>
<td>Maximum thermal power output</td>
<td>26,000 kW</td>
</tr>
<tr>
<td>Yearly thermal energy supplied</td>
<td>46,300 MWh (157,860 MMBtu)</td>
</tr>
</tbody>
</table>

Cost of energy

<table>
<thead>
<tr>
<th></th>
<th>CAPEX</th>
<th>Average Cost of Steam (ACoS)</th>
<th>Levelized Cost of Steam (LCoS)²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9.7M€</td>
<td>12.6 €/MWht</td>
<td>17.3 €/MWh</td>
</tr>
<tr>
<td></td>
<td>(240€/m²)</td>
<td>(3.2 €/MMBTu)</td>
<td>(4.4 €/MMBTu)</td>
</tr>
</tbody>
</table>

Solar Steam Generator for EOR

<table>
<thead>
<tr>
<th>Site conditions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual DNI</td>
<td>2,144 KWh/m²</td>
</tr>
<tr>
<td>Location</td>
<td>Oman</td>
</tr>
<tr>
<td>Solar field design data</td>
<td></td>
</tr>
<tr>
<td>Total number of modules</td>
<td>960</td>
</tr>
<tr>
<td>Mirrors area</td>
<td>864,000 m²</td>
</tr>
<tr>
<td>Land area</td>
<td>150 Ha</td>
</tr>
<tr>
<td>Maximum thermal power output</td>
<td>550,000 kW</td>
</tr>
<tr>
<td>Yearly thermal energy supplied</td>
<td>772,878 MWh (2,637,808 MMBtu)</td>
</tr>
</tbody>
</table>

Cost of energy

<table>
<thead>
<tr>
<th></th>
<th>CAPEX</th>
<th>Average Cost of Steam (ACoS)</th>
<th>Levelized Cost of Steam (LCoS)²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>174M€</td>
<td>12.3 €/MWh</td>
<td>17.1 €/MWh</td>
</tr>
<tr>
<td></td>
<td>(201€/m²)</td>
<td>(3.1 €/MMBTu)</td>
<td>(4.2 €/MMBTu)</td>
</tr>
</tbody>
</table>

¹ ACoS Considering CAPEX and OPEX only — 25 years lifetime
² LCoS Considering: Indexation of 3%pa and discount rate of 7% — 25 years lifetime
THANK YOU FOR YOUR ATTENTION!

Merci pour votre attention!

Данку для вашей Aufmerksamkeit!

Спасибо за внимание!

Gracias por su atención!